英文看多了还是头痛,还是直接上代码

代码相比于上一篇为每个语法树新增了生成指令的函数codegen,并且新增了一些全局变量。

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

TheContext 这是个神奇的变量,很多函数参数都要用它,官方解释说这个对象有llvm绝大多数的数据结构,类型和常量表。

Builder 一个生成IR指令的辅助类。

TheModule 所有生成的指令都会放在这里。

NameValues 就当作一个符号表,发生函数调用时其中的参数就会从这找。

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
  LogErrorV("Unknown variable name");
return V;
}

实际上,NumberExprAST和VariableExprAST的codegen方法都不产生IR指令,仅为上层的指令提供对象,想想也觉得合理,毕竟纯数字和标识符没有任何意义。

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
  return nullptr;

switch (Op) {
case '+':
  return Builder.CreateFAdd(L, R, "addtmp");
case '-':
  return Builder.CreateFSub(L, R, "subtmp");
case '*':
  return Builder.CreateFMul(L, R, "multmp");
case '<':
  L = Builder.CreateFCmpULT(L, R, "cmptmp");
  // Convert bool 0/1 to double 0.0 or 1.0
  return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext),
                              "booltmp");
default:
  return LogErrorV("invalid binary operator");
}
}

代码简单取出两个操作数,根据具体的操作符利用Builder来生成指令。Builder.CreateF(,,)的第三个参数是生成指令中变量的名称。

特殊点的就是 ‘<‘ , 比较后的bool 值或者bool vector 转化为 double。

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (!CalleeF)
  return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
  return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
  ArgsV.push_back(Args[i]->codegen());
  if (!ArgsV.back())
    return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

这是产生调用函数的IR,判断是否已经定义了函数,已定义则判断参数个数是否相同,相同则生成调用指令。

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type*> Doubles(Args.size(),
                            Type::getDoubleTy(TheContext));
FunctionType *FT =
  FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
  Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

PrototypeAST 为def 和external 服务,是FunctionAST的成员之一,这段代码是为FunctionAST->codegen做铺垫。这个函数与其他codegen函数不同的是返回function* 不是values*,原因如上,为def 和 external服务。第一行创建为Arg.size() 个double的vector。第二行创建了使用Arg.size()个double作为参数,返回值为double的函数类型,最后一行创建了函数指定了函数类型、linkage,名称和插入代码的模块。这里函数是没有函数体的,就是llvm 来表示函数定义的方法。如果是一个external函数到这里就结束了。但对于函数定义我们需要函数体。

Function *FunctionAST::codegen() {
// First, check for an existing function from a previous 'extern' declaration.
Function *TheFunction = TheModule->getFunction(Proto->getName());

if (!TheFunction)
  TheFunction = Proto->codegen();

if (!TheFunction)
  return nullptr;

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
  NamedValues[std::string(Arg.getName())] = &Arg;

if (Value *RetVal = Body->codegen()) {
  // Finish off the function.
  Builder.CreateRet(RetVal);

  // Validate the generated code, checking for consistency.
  verifyFunction(*TheFunction);

  return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;
}

判断模块中是否定义了函数,未定义则重新定义,body->codegen()生成函数体的运算执行,在生成ret指令,检查指令是否正常,返回函数。

#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,

// commands
tok_def = -2,
tok_extern = -3,

// primary
tok_identifier = -4,
tok_number = -5
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal;             // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';

// Skip any whitespace.
while (isspace(LastChar))
  LastChar = getchar();

if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
  IdentifierStr = LastChar;
  while (isalnum((LastChar = getchar())))
    IdentifierStr += LastChar;

  if (IdentifierStr == "def")
    return tok_def;
  if (IdentifierStr == "extern")
    return tok_extern;
  return tok_identifier;
}

if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
  std::string NumStr;
  do {
    NumStr += LastChar;
    LastChar = getchar();
  } while (isdigit(LastChar) || LastChar == '.');

  NumVal = strtod(NumStr.c_str(), nullptr);
  return tok_number;
}

if (LastChar == '#') {
  // Comment until end of line.
  do
    LastChar = getchar();
  while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

  if (LastChar != EOF)
    return gettok();
}

// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
  return tok_eof;

// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() = default;

virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;

public:
NumberExprAST(double Val) : Val(Val) {}

Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;

public:
VariableExprAST(const std::string &Name) : Name(Name) {}

Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;

public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
              std::unique_ptr<ExprAST> RHS)
    : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;

public:
CallExprAST(const std::string &Callee,
            std::vector<std::unique_ptr<ExprAST>> Args)
    : Callee(Callee), Args(std::move(Args)) {}

Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;

public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)
    : Name(Name), Args(std::move(Args)) {}

Function *codegen();
const std::string &getName() const { return Name; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;

public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
            std::unique_ptr<ExprAST> Body)
    : Proto(std::move(Proto)), Body(std::move(Body)) {}

Function *codegen();
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
  return -1;

// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
  return -1;
return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = std::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
  return nullptr;

if (CurTok != ')')
  return LogError("expected ')'");
getNextToken(); // eat ).
return V;
}

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;

getNextToken(); // eat identifier.

if (CurTok != '(') // Simple variable ref.
  return std::make_unique<VariableExprAST>(IdName);

// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
  while (true) {
    if (auto Arg = ParseExpression())
      Args.push_back(std::move(Arg));
    else
      return nullptr;

    if (CurTok == ')')
      break;

    if (CurTok != ',')
      return LogError("Expected ')' or ',' in argument list");
    getNextToken();
  }
}

// Eat the ')'.
getNextToken();

return std::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
  return LogError("unknown token when expecting an expression");
case tok_identifier:
  return ParseIdentifierExpr();
case tok_number:
  return ParseNumberExpr();
case '(':
  return ParseParenExpr();
}
}

/// binoprhs
///   ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
                                            std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
  int TokPrec = GetTokPrecedence();

  // If this is a binop that binds at least as tightly as the current binop,
  // consume it, otherwise we are done.
  if (TokPrec < ExprPrec)
    return LHS;

  // Okay, we know this is a binop.
  int BinOp = CurTok;
  getNextToken(); // eat binop

  // Parse the primary expression after the binary operator.
  auto RHS = ParsePrimary();
  if (!RHS)
    return nullptr;

  // If BinOp binds less tightly with RHS than the operator after RHS, let
  // the pending operator take RHS as its LHS.
  int NextPrec = GetTokPrecedence();
  if (TokPrec < NextPrec) {
    RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
    if (!RHS)
      return nullptr;
  }

  // Merge LHS/RHS.
  LHS =
      std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}

/// expression
///   ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
  return nullptr;

return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
///   ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
  return LogErrorP("Expected function name in prototype");

std::string FnName = IdentifierStr;
getNextToken();

if (CurTok != '(')
  return LogErrorP("Expected '(' in prototype");

std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
  ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
  return LogErrorP("Expected ')' in prototype");

// success.
getNextToken(); // eat ')'.

return std::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
  return nullptr;

if (auto E = ParseExpression())
  return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
  // Make an anonymous proto.
  auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
                                                std::vector<std::string>());
  return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static LLVMContext TheContext;
static IRBuilder<> Builder(TheContext);
static std::unique_ptr<Module> TheModule;
static std::map<std::string, Value *> NamedValues;

Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;
}

Value *NumberExprAST::codegen() {
return ConstantFP::get(TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
  return LogErrorV("Unknown variable name");
return V;
}

Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
  return nullptr;

switch (Op) {
case '+':
  return Builder.CreateFAdd(L, R, "addtmp");
case '-':
  return Builder.CreateFSub(L, R, "subtmp");
case '*':
  return Builder.CreateFMul(L, R, "multmp");
case '<':
  L = Builder.CreateFCmpULT(L, R, "cmptmp");
  // Convert bool 0/1 to double 0.0 or 1.0
  return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
default:
  return LogErrorV("invalid binary operator");
}
}

Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (!CalleeF)
  return LogErrorV("Unknown function referenced");

// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
  return LogErrorV("Incorrect # arguments passed");

std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
  ArgsV.push_back(Args[i]->codegen());
  if (!ArgsV.back())
    return nullptr;
}

return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
FunctionType *FT =
    FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);

Function *F =
    Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
  Arg.setName(Args[Idx++]);

return F;
}

Function *FunctionAST::codegen() {
// First, check for an existing function from a previous 'extern' declaration.
Function *TheFunction = TheModule->getFunction(Proto->getName());

if (!TheFunction)
  TheFunction = Proto->codegen();

if (!TheFunction)
  return nullptr;

// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
Builder.SetInsertPoint(BB);

// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
  NamedValues[std::string(Arg.getName())] = &Arg;

if (Value *RetVal = Body->codegen()) {
  // Finish off the function.
  Builder.CreateRet(RetVal);

  // Validate the generated code, checking for consistency.
  verifyFunction(*TheFunction);

  return TheFunction;
}

// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
  if (auto *FnIR = FnAST->codegen()) {
    fprintf(stderr, "Read function definition:");
    FnIR->print(errs());
    fprintf(stderr, "\n");
  }
} else {
  // Skip token for error recovery.
  getNextToken();
}
}

static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
  if (auto *FnIR = ProtoAST->codegen()) {
    fprintf(stderr, "Read extern: ");
    FnIR->print(errs());
    fprintf(stderr, "\n");
  }
} else {
  // Skip token for error recovery.
  getNextToken();
}
}

static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
  if (auto *FnIR = FnAST->codegen()) {
    fprintf(stderr, "Read top-level expression:");
    FnIR->print(errs());
    fprintf(stderr, "\n");
  }
} else {
  // Skip token for error recovery.
  getNextToken();
}
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
  fprintf(stderr, "ready> ");
  switch (CurTok) {
  case tok_eof:
    return;
  case ';': // ignore top-level semicolons.
    getNextToken();
    break;
  case tok_def:
    HandleDefinition();
    break;
  case tok_extern:
    HandleExtern();
    break;
  default:
    HandleTopLevelExpression();
    break;
  }
}
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.

// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();

// Make the module, which holds all the code.
TheModule = std::make_unique<Module>("my cool jit", TheContext);

// Run the main "interpreter loop" now.
MainLoop();

// Print out all of the generated code.
TheModule->print(errs(), nullptr);

return 0;
}

编译命令

$LLVM_HOME/bin/clang++ -g -O3 toy.cpp `$LLVM_HOME/bin/llvm-config --cxxflags --ldflags --system-libs --libs core` -o toy -I/usr/local/include

先从简单的开始分析:

ready> 1;  
ready>Read top-level expression:define double @__anon_expr() {
entry:
  ret double 1.000000e+00
}

因为既不是def 也不是 extern 直接进去到HandleTopLevelExpression, ParseTopLevelExpr创建了FunctionAST语法树, 如图:

image-20200812173710923

PrototypeAST 的名称为”__anon_expr” , 参数为空,NumberExprAST 存了个”1″,语法树生成结束后。

调用FnAST->codegen() 来生成对应语法树的IR指令。先生成函数定义再生成函数体。过程描述过了,不多赘述。

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html

分类: llvm

pareto

未来什么方向不管,先做自己喜欢做的事情。

0 条评论

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注